Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.262
Filtrar
1.
PLoS Pathog ; 20(3): e1012085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484009

RESUMO

Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.


Assuntos
Tombusvirus , Tombusvirus/fisiologia , Saccharomyces cerevisiae/genética , Membranas Intracelulares/metabolismo , Replicação Viral/fisiologia , Fosfolipídeos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Autofagia , Organelas/metabolismo , RNA Viral/genética
2.
Commun Biol ; 7(1): 334, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491121

RESUMO

VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38488191

RESUMO

Lysosomes play a central role in biochemical signal transduction and oxidative stress in cells. Inducing lysosome membrane penetration (LMP) to cause lysosomal-dependent cell death (LCD) in tumor cells is an effective strategy for cancer therapy. Chemical drugs can destroy the stability of lysosomes by neutralizing protons within the lysosomes or enhancing the fragility of the lysosomal membranes. However, there remain several unsolved problems of traditional drugs in LMP induction due to insufficient lysosomal targeting, fast metabolism, and toxicity in normal cells. With the development of nanotechnology, magnetic nanoparticles have been demonstrated to target lysosomes naturally, providing a versatile tool for lysosomal modulation. Combined with excellent tissue penetration and spatiotemporal manipulability of magnetic fields, magnetic modulation of lysosomes progresses rapidly in inducing LMP and LCD for cancer therapy. This review comprehensively discussed the strategies of magnetic modulation of lysosomes for cancer therapy. The intrinsic mechanisms of LMP-induced LCD were first introduced. Then, the modulation of lysosomes by diverse physical outputs of magnetic fields was emphatically discussed. Looking forward, this review will shed the light on the prospect of magnetic modulation of lysosomes, inspiring future research of magnetic modulation strategy in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Membranas Intracelulares , Neoplasias , Humanos , Morte Celular/fisiologia , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fenômenos Magnéticos
4.
Mol Cell ; 84(8): 1556-1569.e10, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38503285

RESUMO

Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.


Assuntos
Lisossomos , Macroautofagia , Humanos , Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Lipídeos , Lisossomos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
5.
Mol Biol Cell ; 35(5): ar70, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536415

RESUMO

Lysosome turnover and biogenesis are induced in response to treatment of cells with agents that cause membrane rupture, but whether other stress conditions engage similar homeostatic mechanisms is not well understood. Recently we described a form of selective turnover of lysosomes that is induced by metabolic stress or by treatment of cells with ionophores or lysosomotropic agents, involving the formation of intraluminal vesicles within intact organelles through microautophagy. Selective turnover involves noncanonical autophagy and the lipidation of LC3 onto lysosomal membranes, as well as the autophagy gene-dependent formation of intraluminal vesicles. Here, we find a form of microautophagy induction that requires activity of the lipid kinase PIKfyve and is associated with the nuclear translocation of TFEB, a known mediator of lysosome biogenesis. We show that LC3 undergoes turnover during this process, and that PIKfyve is required for the formation of intraluminal vesicles and LC3 turnover, but not for LC3 lipidation onto lysosomal membranes, demonstrating that microautophagy is regulated by PIKfyve downstream of noncanonical autophagy. We further show that TFEB activation requires noncanonical autophagy but not PIKfyve, distinguishing the regulation of biogenesis from microautophagy occurring in response to agents that induce lysosomal stress.


Assuntos
Lisossomos , Microautofagia , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Membranas Intracelulares/metabolismo , Ionóforos , Lisossomos/metabolismo , Humanos , Linhagem Celular Tumoral
6.
Methods Mol Biol ; 2776: 151-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502502

RESUMO

The outer and the inner membranes of the chloroplast envelope, also called OEM and IEM, have distinct lipid and protein compositions. They host molecular systems involved in the biogenesis of the organelle, its cellular function, and its communication with other compartments. Here we describe a method for the isolation of these two membranes starting from intact chloroplast preparations, with two alternative procedures based on the starting material. One was developed from spinach leaves, the other from pea leaves. The two procedures differ in the method used to isolate and rupture chloroplasts and separate each membrane.


Assuntos
Membranas Intracelulares , Magnoliopsida , Membranas Intracelulares/metabolismo , Magnoliopsida/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo
7.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474423

RESUMO

Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.


Assuntos
Membranas Intracelulares , Neoplasias , Humanos , Membranas Intracelulares/metabolismo , Morte Celular , Neoplasias/metabolismo , Transdução de Sinais , Lisossomos/metabolismo
8.
Nature ; 627(8003): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383785

RESUMO

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Sítios de Ligação , Biocatálise , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , RNA de Transferência/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura
9.
Nature ; 627(8003): 437-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383789

RESUMO

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Homeostase , Membranas Intracelulares/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , RNA de Transferência/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
10.
Elife ; 132024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240316

RESUMO

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMP-activated protein kinase and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin-positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk, and organism longevity.


Assuntos
Lisossomos , Proteômica , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteoma/metabolismo , Transdução de Sinais
11.
Cell ; 187(2): 257-270, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242082

RESUMO

The view of organelles and how they operate together has changed dramatically over the last two decades. The textbook view of organelles was that they operated largely independently and were connected by vesicular trafficking and the diffusion of signals through the cytoplasm. We now know that all organelles make functional close contacts with one another, often called membrane contact sites. The study of these sites has moved to center stage in cell biology as it has become clear that they play critical roles in healthy and developing cells and during cell stress and disease states. Contact sites have important roles in intracellular signaling, lipid metabolism, motor-protein-mediated membrane dynamics, organelle division, and organelle biogenesis. Here, we summarize the major conceptual changes that have occurred in cell biology as we have come to appreciate how contact sites integrate the activities of organelles.


Assuntos
Organelas , Biologia , Membrana Celular/metabolismo , Membranas Mitocondriais , Organelas/química , Organelas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo
12.
J Biol Chem ; 300(1): 105504, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036174

RESUMO

The heterohexameric ATPases associated with diverse cellular activities (AAA)-ATPase Pex1/Pex6 is essential for the formation and maintenance of peroxisomes. Pex1/Pex6, similar to other AAA-ATPases, uses the energy from ATP hydrolysis to mechanically thread substrate proteins through its central pore, thereby unfolding them. In related AAA-ATPase motors, substrates are recruited through binding to the motor's N-terminal domains or N terminally bound cofactors. Here, we use structural and biochemical techniques to characterize the function of the N1 domain in Pex6 from budding yeast, Saccharomyces cerevisiae. We found that although Pex1/ΔN1-Pex6 is an active ATPase in vitro, it does not support Pex1/Pex6 function at the peroxisome in vivo. An X-ray crystal structure of the isolated Pex6 N1 domain shows that the Pex6 N1 domain shares the same fold as the N-terminal domains of PEX1, CDC48, and NSF, despite poor sequence conservation. Integrating this structure with a cryo-EM reconstruction of Pex1/Pex6, AlphaFold2 predictions, and biochemical assays shows that Pex6 N1 mediates binding to both the peroxisomal membrane tether Pex15 and an extended loop from the D2 ATPase domain of Pex1 that influences Pex1/Pex6 heterohexamer stability. Given the direct interactions with both Pex15 and the D2 ATPase domains, the Pex6 N1 domain is poised to coordinate binding of cofactors and substrates with Pex1/Pex6 ATPase activity.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfoproteínas/metabolismo
13.
Cell Struct Funct ; 49(1): 1-10, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38072450

RESUMO

Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
14.
J Exp Bot ; 75(1): 45-59, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37715992

RESUMO

The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.


Assuntos
Arabidopsis , Poliproteínas , Poliproteínas/análise , Poliproteínas/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Arabidopsis/metabolismo
15.
PLoS One ; 18(12): e0295047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039321

RESUMO

Peroxisomes are membrane-enclosed organelles with important roles in fatty acid breakdown, bile acid synthesis and biosynthesis of sterols and ether lipids. Defects in peroxisomes result in severe genetic diseases, such as Zellweger syndrome and neonatal adrenoleukodystrophy. However, many aspects of peroxisomal biogenesis are not well understood. Here we investigated delivery of tail-anchored (TA) proteins to peroxisomes in mammalian cells. Using glycosylation assays we showed that peroxisomal TA proteins do not enter the endoplasmic reticulum (ER) in both wild type (WT) and peroxisome-lacking cells. We observed that in cells lacking the essential peroxisome biogenesis factor, PEX19, peroxisomal TA proteins localize mainly to mitochondria. Finally, to investigate peroxisomal TA protein targeting in cells with fully functional peroxisomes we used a proximity biotinylation approach. We showed that while ER-targeted TA construct was exclusively inserted into the ER, peroxisome-targeted TA construct was inserted to both peroxisomes and mitochondria. Thus, in contrast to previous studies, our data suggest that some peroxisomal TA proteins do not insert to the ER prior to their delivery to peroxisomes, instead, mitochondria can be involved.


Assuntos
Proteínas de Membrana , Peroxissomos , Animais , Peroxissomos/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Mamíferos/metabolismo
16.
Cell Rep ; 42(12): 113567, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38118441

RESUMO

Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.


Assuntos
Proteínas Fúngicas , Membranas Intracelulares , Fosfolipases , Chaetomium/enzimologia , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfolipases/química , Fosfolipases/genética , Fosfolipases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Domínios Proteicos , Simulação de Dinâmica Molecular , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Ativação Enzimática
17.
Nature ; 623(7989): 1062-1069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968398

RESUMO

Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.


Assuntos
Endossomos , Membranas Intracelulares , Lisossomos , Macrófagos , Grânulos de Estresse , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/microbiologia , Endossomos/patologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/patologia , Mycobacterium tuberculosis/metabolismo , Grânulos de Estresse/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia
18.
Sci Rep ; 13(1): 19694, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951993

RESUMO

Diffusion and mobility are essential for cellular functions, as molecules are usually distributed throughout the cell and have to meet to interact and perform their function. This also involves the cytosolic migration of cellular organelles. However, observing such diffusion and interaction dynamics is challenging due to the high spatial and temporal resolution required and the accurate analysis of the diffusional tracks. The latter is especially important when identifying anomalous diffusion events, such as directed motions, which are often rare. Here, we investigate the migration modes of peroxisome organelles in the cytosol of living cells. Peroxisomes predominantly migrate randomly, but occasionally they bind to the cell's microtubular network and perform directed migration, which is difficult to quantify, and so far, accurate analysis of switching between these migration modes is missing. We set out to solve this limitation by experiments and analysis with high statistical accuracy. Specifically, we collect temporal diffusion tracks of thousands of individual peroxisomes in the HEK 293 cell line using two-dimensional spinning disc fluorescence microscopy at a high acquisition rate of 10 frames/s. We use a Hidden Markov Model with two hidden states to (1) automatically identify directed migration segments of the tracks and (2) quantify the migration properties for comparison between states and between different experimental conditions. Comparing different cellular conditions, we show that the knockout of the peroxisomal membrane protein PEX14 leads to a decrease in the directed movement due to a lowered binding probability to the microtubule. However, it does not eradicate binding, highlighting further microtubule-binding mechanisms of peroxisomes than via PEX14. In contrast, structural changes of the microtubular network explain perceived eradication of directed movement by disassembly of microtubules by Nocodazole-treatment.


Assuntos
Microtúbulos , Peroxissomos , Humanos , Peroxissomos/metabolismo , Células HEK293 , Microtúbulos/metabolismo , Membranas Intracelulares/metabolismo , Microscopia de Fluorescência
19.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963875

RESUMO

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Assuntos
Peroxissomos , Ubiquitina , Humanos , Ubiquitinação , Ubiquitina/metabolismo , Transporte Proteico/fisiologia , Peroxissomos/metabolismo , Membranas Intracelulares/metabolismo
20.
EMBO Rep ; 24(12): e57300, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987447

RESUMO

Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.


Assuntos
Caenorhabditis elegans , Microautofagia , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...